Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment.
نویسندگان
چکیده
16S ribosomal DNA (rDNA) clone library analysis was conducted to assess prokaryotic diversity and community structural changes within a surficial sediment core obtained from an Antarctic continental shelf area (depth, 761 m) within the Mertz Glacier Polynya (MGP) region. Libraries were created from three separate horizons of the core (0- to 0.4-cm, 1.5- to 2.5-cm, and 20- to 21-cm depth positions). The results indicated that at the oxic sediment surface (depth, 0 to 0.4 cm) the microbial community appeared to be dominated by a small subset of potentially r-strategist (fast-growing, opportunistic) species, resulting in a lower-than-expected species richness of 442 operational taxonomic units (OTUs). At a depth of 1.5 to 2.5 cm, the species richness (1,128 OTUs) was much higher, with the community dominated by numerous gamma and delta proteobacterial phylotypes. At a depth of 20 to 21 cm, a clear decline in species richness (541 OTUs) occurred, accompanied by a larger number of more phylogenetically divergent phylotypes and a decline in the predominance of Proteobacteria. Based on rRNA and clonal abundance as well as sequence comparisons, syntrophic cycling of oxidized and reduced sulfur compounds appeared to be the dominant process in surficial MGP sediment, as phylotype groups putatively linked to these processes made up a large proportion of clones throughout the core. Between 18 and 65% of 16S rDNA phylotypes detected in a wide range of coastal and open ocean sediments possessed high levels of sequence similarity (>95%) with the MGP sediment phylotypes, indicating that many sediment prokaryote phylotype groups defined in this study are ubiquitous in marine sediment.
منابع مشابه
Benthic polychaetes off Edward VIII Plateau in the continental shelf of East Antarctica
The benthic fauna of the shelf off East Antarctica is relatively unexplored, when compared to regions like the West Antarctic Peninsula and Ross Sea. The continental shelf of Antarctica is unusually deep (average depth 450 m) and in some places as wide as 125 km. Though this shelf covers a vast area (nearly 11.4% of the world continental shelf area), baseline information on species occurrence i...
متن کاملProkaryotic metabolic activity and community structure in Antarctic continental shelf sediments.
The prokaryote community activity and structural characteristics within marine sediment sampled across a continental shelf area located off eastern Antarctica (66 degrees S, 143 degrees E; depth range, 709 to 964 m) were studied. Correlations were found between microbial biomass and aminopeptidase and chitinase rates, which were used as proxies for microbial activity. Biomass and activity were ...
متن کاملA synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change
The Antarctic continental shelf is large, deep (500–1000m), and characterized by extreme seasonality in sea-ice cover and primary production. Intense seasonality and short pelagic foodwebs on the Antarctic shelf may favor strong benthopelagic coupling, whereas unusual water depth combined with complex topography and circulation could cause such coupling to be weak. Here, we address six question...
متن کاملA Shift in the Biogenic Silica of Sediment in the Larsen B Continental Shelf, Off the Eastern Antarctic Peninsula, Resulting from Climate Change
In 2002, section B of the Larsen ice shelf, off of the Eastern Antarctic Peninsula, collapsed and created the opportunity to study whether the changes at the sea surface left evidence in the sedimentary record. Biogenic silica is major constituent of Antarctic marine sediment, and its presence in the sediment column is associated with diatom production in the euphotic zone. The abundance of dia...
متن کاملHighly Diverse, Poorly Studied and Uniquely Threatened by Climate Change: An Assessment of Marine Biodiversity on South Georgia's Continental Shelf
We attempt to quantify how significant the polar archipelago of South Georgia is as a source of regional and global marine biodiversity. We evaluate numbers of rare, endemic and range-edge species and how the faunal structure of South Georgia may respond to some of the fastest warming waters on the planet. Biodiversity data was collated from a comprehensive review of reports, papers and databas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 5 شماره
صفحات -
تاریخ انتشار 2003